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Abstract: This paper provides a new submarine experiment and shows the results of an interval
SLAM (Simultaneous Localization And Mapping) method. The SLAM problem is cast into a
constraint satisfaction problem where interval propagation algorithms are particularly efficient.
The resulting method is applied to the localization of a submarine robot from the GESMA
(Groupe d’Etudes Sous-Marines de l’Atlantique), the Daurade during an experiment in the
Douarnenez bay, in Brittany (France).
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1. INTRODUCTION

In this paper, we describe the results of an interval ap-
proach developed to deal with a SLAM (Simultaneous Lo-
calization And Mapping) problem in a submarine context
(see Leonard and Durrant-Whyte [1992] for the general
SLAM problem). The SLAM problem for an autonomous
robot moving in an unknown environment is to build a map
of this environment while simultaneously using this map
to compute its location. Most of the approaches presented
for the SLAM problem cast the problem into a state
estimation problem for a dynamic system, by including
the marks locations among the state variables to be esti-
mated (Castellanos and Tardos [1999], Dissanayake et al.
[2001], Montemerlo et al. [2003]). See also Williams et al.
[2001], Ruiz et al. [2004], Eustice et al. [2005] for the case
of autonomous underwater robots. Most of the proposed
solutions are based on probabilistic estimation techniques
(Kalman filtering, Bayesian estimation, particle filters, see
Thrun et al. [2005]) which aim at blending data with some
state equations of the robot.

For the experiment to be presented, we will use a set-
membership approach for SLAM (see e.g., Di Marco et al.
[2004], Di Marco et al. [2001]) based on interval arithmetic
initially developed for the Redermor submarine (see Jaulin
[2009]) through an improved version of GESMI (Guaran-
teed Estimation of Sea Mines with Intervals), a software
developed to build the trajectory of the robot, get the
position of the marks... (Jaulin et al. [2006], Jaulin et al.
[2007], figure 1).

In this problem, we will try to find an envelope for the
trajectory of the robot and to compute sets which contain
some detected marks. Note that for our experiment, the
detections of the marks are performed by a human opera-

Fig. 1. Screenshot of the new part of GESMI, that
computes and shows the position of the marks, the
trajectory envelope, the position error and helps for
the identification of the marks among the different
detections.

tor, after the mission of the robot. Thus, our problem can
be considered as an offline SLAM.

Set-membership methods have often been considered for
the localization of robots (see, e.g., Meizel et al. [1996],
Halbwachs and Meizel [1996], in the case where the prob-
lem is linear and also Caiti et al. [2002] when the robot
is underwater). Interval analysis has been shown to be
efficient in several SLAM applications (see Drocourt et al.
[2005] and Porta [2005] where it has been applied to the
SLAM of wheeled robots).



In situations where strong nonlinearities are involved,
interval analysis has been shown to be useful (see, e.g.,
Meizel et al. [2002], where the first localization of an
actual robot has been solved with interval methods). Our
problem will lead us to a huge set of nonlinear equations
which can be solved efficiently using interval analysis and
constraint propagation (see, e.g., Jaulin et al. [2001] for
notions related to interval constraint propagation and
applications). There are other robotics applications such
as state estimation (see Raissi et al. [2004]), dynamic
localization of robots (see Gning and Bonnifait [2006]),
control of robots (see Lydoire and Poignet [2003] and Vinas
et al. [2006]) or topology analysis of configuration spaces
(see Delanoue et al. [2006]) where interval constraint
propagation methods have been successful.

In this paper, we first describe the robot to be considered
in Section 2. Then in Section 3, the interval approach for
SLAM will be presented. The experiment as well as the
results will be described in Section 4. Section 5 concludes
the paper.

2. THE DAURADE AUV (AUTONOMOUS
UNDERWATER VEHICLE)

The robot Daurade to be considered in our application
is an AUV developed by ECA and used by the GESMA
(a center of the French defense ministry which super-
vises most of the research in French underwater robotics)
and the SHOM (French Navy Hydrographic and Oceano-
graphic Service). This robot (figure 2) has a length of 5 m,
a diameter of 0.70 m and a weight of 1 ton (see Vrignaud
and Meyrat [2009]). It can navigate autonomously up to 10
hours at a speed of 4 knots (max speed 8 knots) and up to
a depth of 300 m. Its position estimation is expected to be
with an accuracy better than 50 m after 10 km of mission
thanks to accurate sensors and an embedded Kalman filter
(we do not know its parameters).

The Daurade is a multi sensor AUV designed for rapid
environmental assessment operations. It has to acquire and
transmit environment data on a poorly known area. It is
one of the successors of the Redermor (see Jaulin [2009],
Jaulin et al. [2006], Jaulin et al. [2007]). It encloses on
board processing capabilities that allow adaptive mission
planning.

Several sensors are integrated in the Daurade. Here is the
list of those that will provide the data used by our SLAM
algorithm :

• DGPS(Differential Global Positioning System). Since
electromagnetic waves (1.57542 GHz) do not propa-
gate through the water, the GPS is operational only
when the robot is at the surface of the ocean.

• Lateral sonar Klein 5500. It provides an image of
the bottom of the ocean (often called waterfall). The
image is of about 75 m large (corresponds to the
rangescale parameter of the sonar) for more than 20
km high (corresponding to the length covered by the
robot during its mission). Although there is an image
from the right and the left of the robot, we have
only used the right sonar image. The use of sonars
for improving the localization and the navigation has

Fig. 2. The Daurade AUV (Courtesy of DGA/GESMA).

already been proven on several robotics applications
(see, e.g., Leonard and Durrant-Whyte [1992]).

• Doppler Velocity Loch (DVL) 1200 kHz type Naviga-
tor. This sensor makes possible to compute the speed
vector of the robot vr. It emits ultrasonic waves which
are reflected on the bottom of the ocean. Since the
bottom is immobile, this sensor is able to compute
an estimation of its speed using the Doppler effect. It
outputs also the distance between the robot and the
bottom of the ocean.

• IXSEA U-PHINS INS (Inertial Navigation System).
It gets the three Euler angles (i.e., the orientation) of
the robot.

• Pressure sensor. It gets the depth of the robot (i.e.
the distance between the robot and the surface of the
ocean).

3. SET-MEMBERSHIP APPROACH USED FOR
SLAM

3.1 Interval arithmetic

An interval is a closed and connected subset of R. IR is
the set of the intervals of R. Consider two intervals [x] and
[y] and an operator ⋄ ∈ {+,−, ., /}, we define [x] ⋄ [y] as
the smallest interval which contains all feasible values for
x⋄y, if x ∈ [x] and y ∈ [y] (see Moore [1979]). For instance

[−1, 3] + [2, 5] = [1, 8],
[−1, 3].[2, 5] = [−5, 15],

[−1, 3]/[2, 5] = [−
1

2
,
3

2
].

(1)

If f is an elementary function such as sin,cos,... we define
f([x]) as the smallest interval which contains all feasible
values for f(x), if x ∈ [x]. A box or interval vector [x] is a
vector whose components are intervals:

[x] = [x−1 , x
+

1 ]× ...× [x
−

n , x
+
n ] = [x1]× ...× [xn]. (2)

3.2 Contraction and propagation

Consider a constraint C (i.e., an equation or an inequality),
some variables x1, x2, . . . involved in C and prior interval
domains [xi] that contain all feasible values for the xi’s.
Interval arithmetic makes possible to contract the domains
[xi] without removing any feasible values for the xi’s. For



instance, consider the equation x3 = x1 + x2 where the
domains for x1, x2, x3 are given by [x1] = [−∞, 5], [x2] =
[−∞, 4] and [x3] = [6,∞]. These domains can be con-
tracted to [x′1] = [2, 5], [x′2] = [1, 4] and [x′3] = [6, 9]. The
resulting interval calculus is as follows:

x3 = x1 + x2 ⇒ x3 ∈ [6,∞] ∩ ([−∞, 5] + [−∞, 4])
= [6,∞] ∩ [−∞, 9] = [6, 9].

x1 = x3 − x2 ⇒ x1 ∈ [−∞, 5] ∩ ([6,∞]− [−∞, 4])
= [−∞, 5] ∩ [2,∞] = [2, 5].

x2 = x3 − x1 ⇒ x2 ∈ [−∞, 4] ∩ ([6,∞]− [−∞, 5])
= [−∞, 4] ∩ [1,∞] = [1, 4].

(3)

This contraction procedure can be performed with much
more complex constraints. A contraction operator is called
a contractor (Chabert and Jaulin [2009]). When more than
one constraint are involved, the contractions are performed
sequentially several times, until no more significant con-
tractions can be observed. It can be shown that the box to
which the method converges does not depend on the order
to which the contractors are applied (Jaulin et al. [2001]),
but the computing time is highly sensitive to this order.
There is no optimal order in general, but in practice, one of
the most efficient is called forward-backward propagation.
It consists in writing the whole set of equations under
the form f(x)= y where x and y correspond to quantities
that can be measured (i.e., some prior interval domains
are given for them). Then, using interval arithmetic, the
intervals are propagated from x to y in a first step (for-
ward propagation) and, in a second step, the intervals are
propagated from y to x (backward propagation).

3.3 Principle of the method used

In our set membership context, we can describe our SLAM
problem as follows (see Jaulin [2009])

{
ẋ = f(x,u) (evolution equation)
y = g(x) (observation equation)
zi = h(x,u,mi) (mark equation)

(4)

where x(t) is the state vector of the robot, u(t) is its input
vector, y(t) is its output vector, mi is the location of the
ith mark and zi is the measurement vector related to the
ith mark. We consider that

• At some time t, we have a box [x] (t) containing the
state vector:

x(t) ∈ [x] (t) (5)

• For all t ∈ [t0, tf ], we have boxes enclosing the u(t)
and y(t):

∀t ∈ [t0, tf ],u(t) ∈ [u] (t) and y(t) ∈ [y] (t) (6)

• We have a finite subset M ⊂ [t0, tf ] × {1, . . . , imax}
such that

zi(t) ∈ [zi] (t). (7)

If (t, i) ∈M, the mark i has been detected at time t.

In a submarine context, the robot motion can be described
by the following state equation:

ṗ =REuler(ϕ, θ, ψ).vr (8)

where

• p = (px, py, pz) are the coordinates of the robot
expressed in the frame (O, i, j,k) where O is the
location of the robot at time t0 = 0, the vector

i indicates the north, j indicates the east and k is
oriented toward the center of the earth

• REuler(ϕ, θ, ψ) represent the Euler rotation matrix
(the heading ψ, the pitch θ, the roll ϕ) of the robot
measured by the INS

• vr represents the speed of the robot measured by the
DVL sensor.

The observation equation is

y = p (9)

because px, py can be measured sometimes by the GPS and
pz is obtained from the pressure sensor and the altimeter.

Using the sonar waterfall data, a human operator can
detect marks and get the distance mark-robot. The z
position of the mark detected can be deduced from the
submarine depth pz and altitude a. Therefore the mark
equation for the ith mark is

zi =

(
r(p,ϕ, θ, ψ,mi)

mz
i

)
(10)

where r(p,ϕ,θ,ψ,mi) is the distance mark-robot and m
z
i

is its z position.

As a consequence, our set-membership SLAM using inter-
val arithmetic in a submarine context can be written as
follows: 





ṗ = REuler(ϕ, θ, ψ).vr
y = p

zi =

(
r(p,ϕ, θ, ψ,mi)

mz
i

) . (11)

4. APPLICATION

4.1 Experiment and data collected

The Daurade AUV was launched in the Douarnenez bay
for an experiment of about 5 hours (from t = 0 to
t = 18445.75) of autonomous scanning of an area making
vertical and horizontal trajectories above a limited zone.
During its mission, the robot localizes itself using all its
sensors combined through a Kalman filter. The robot
tries to follow a trajectory defined by a list of predefined
waypoints to be reached. These waypoints are chosen by
a human operator before the mission. The precision of the
embedded localization algorithm is estimated around 50
m for 10 km which is sufficient to control the robot for the
mission in the ocean without being lost.

The AUV took GPS data at the surface 3 times during
the mission : (i) during the first seconds, (ii) in the middle
of the mission, before changing the survey direction from
horizontal to vertical and (iii) at the end of the mission:

t = 0s

(
px
py

)
=

(
0.332443
−0.091429

)

t = 9210s

(
px
py

)
=

(
10.277683
663.195976

)

t = 18419s

(
px
py

)
=

(
875.402443
724.556278

)

A file containing the navigation data and error estimation
for the orientation and the speed is produced during the
mission. Thirteen different marks m1, . . . ,m13 have been
seen through 33 detections on the waterfall produced by
the sonar. For example, the marks selected can be brighter



Fig. 3. Part of the sonar image taken by the robot
(screenshot from the S���	P	� software).

points on the sonar image due to rocks, shipwrecks parts...
(figure 3).A scrolling of the waterfall was performed after
the mission by a human operator using the S���	P	�
software to get the list of marks detections. He was able to
get an estimation r̃(t) of the distance r(t) from the robot
to the mark detected at time t. The actual distance ri(t)
between the robot and the mark mi is supposed to satisfy
the relation

ri(t) ∈ [r̃i(t)− 1, r̃i(t) + 1] (12)

(Jaulin [2009]), assuming that the precision of the sonar
is of 1 m. Each mark detection adds constraints on the
position of the robot at the time of the detection as well
as on the position of the mark in the experiment zone.

Although the detection of a mark and the matching
between marks detected several times were performed
manually once the robot has accomplished its mission, the
new part of GESMI helps the human operator to correct
wrong mark matching (see figure 4). GESMI enables to
see sonar data, to add a detection, to see the envelopes
enclosing the trajectory of the robot and to generate the
predicted waterfall for the detected marks. It also makes
possible to see the positions in the waterfall where the
marks should have been seen and confirm these predictions
by adding a new detection of the mark. The human
operator should first detect each mark only once. The time
and distance robot-mark of other possible detections of
these marks will be predicted thanks to the navigation
data and the operator will just have to confirm the new
detections provided by GESMI and make them more
accurate.

4.2 Results

From the navigation data and the 3 GPS positions mea-
sured at the beginning, the middle and the end of the
mission, we can build an envelope for the trajectory using a
forward propagation performed on the evolution equations
provided by Equations (11). Figure 5 represents the esti-

Fig. 4. Reconstructed waterfall showing a detected mark
and the prediction of the distance robot-mark at
another time using navigation data.

Fig. 5. Trajectory envelope after a forward propagation
(less than 1 s of computing time), painted grey. The
center of the corresponding boxes is painted dark grey.
The frame box is [−200, 1000]m×[−200, 1000]m (in
the (x,y) plane).

mated envelope with the center of the corresponding boxes.
Note that due to the nature of the mission of the robot,
the trajectory overlaps and it is difficult to interpret the
accuracy of the envelope without figure 6 which represents
the errors (half of the box width containing the estimated
positions) on the positions x, y and z with respect to t.

A backward propagation improves the position estimation
and produces the results shown on figures 7 and 8. We see
that the position errors in x and y have a threshold. This
is due to the difference between the estimated position and
the measured position at the GPS point. If the estimated
position had been equal to the measured position, there
would have been no contraction of the trajectory and we
would have a triangular shape, without any threshold.

More measurements and more information on the experi-
ment imply a better accuracy on the results. Therefore, if
we take into account the detections made by the human
operator on the sonar image, the estimation of the trajec-
tory of the robot can be improved with the estimation of
the position of the marks (see figures 9 and 10). After a
global interval propagation taking into account the marks
and all other sensors we have a localization of the AUV
and the marks with an accuracy of less than 40 m in
less than 10 s of computing time. The accuracy of the



Fig. 6. Position errors on x (black), y (dark grey)
and z (light grey) with respect to t obtained
after a forward propagation. The frame box is
[0, 18445.75]s×[0, 200]m.

Fig. 7. Trajectory envelope after a forward/backward
propagation (less than 2 s of computing time).

Fig. 8. Position errors after a forward/backward propaga-
tion.

positions provided after the interval SLAM compared to
that obtained by the Kalman filter of the Daurade is
poor (the improvement is less than 10 m). This poor
improvement is due to the fact that (i) the data provided
by the INS and by the Loch Doppler are very accurate
and make possible to localize the robot with good ac-
curacy (less than 50 m) without any SLAM (ii) A GPS
point has been taken at the middle of the mission which
makes the SLAM less useful and (iii) the Kalman filter

Fig. 9. Trajectory envelope after several contractions tak-
ing into account marks detected in the waterfall (less
than 10 s of computing time). The envelopes of the
marks position are painted black.

Fig. 10. Position errors after several contractions taking
into account the marks detected in the waterfall.

assumes that the state and measurement noises are white,
Gaussian and centered which makes possible to have an
error which increases with the square root of t (which
is often optimistic in practice). The error computed by
the interval method considers the worst case scenario and
only assumes bounds on the errors. As a consequence,
the interval method provides more conservative errors.
However, since no linearization is performed and since
no assumption about the Gaussian nature of the noise is
done,... the errors provided by the interval approach can
be considered as reliable. In the context of our experiment,
no inconsistencies have been detected, i.e., all data with all
errors provided by the navigation system are consistent
with the marks detections and with the envelope detected
by the interval propagation. As a consequence, the interval
propagation can be used to validate the navigation system.
Of course, a light validation of the navigation system is
already done when we compare the predicted position with
the GPS position when the AUV surfaces. But here, with
the interval method, we check more: all marks detections,
the envelope provided by the navigation system, the GPS
points,... are all consistent together.

5. CONCLUSION

In this paper, we have shown a new experiment and
the results of an interval constraint propagation used to



solve an offline SLAM problem. We described the Daurade
AUV and in particular its sensors. Then, we reminded the
main principles of the interval propagation method used,
described the context of the experiment and provided an
analysis of the results of our interval method on the data
collected.
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